Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2400729, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597368

RESUMO

Wireless radiofrequency rectifiers have the potential to power the billions of "Internet of Things" (IoT) devices currently in use by effectively harnessing ambient electromagnetic radiation. However, the current technology relies on the implementation of rectifiers based on Schottky diodes, which exhibit limited capabilities for high-frequency and low-power applications. Consequently, they require an antenna to capture the incoming signal and amplify the input power, thereby limiting the possibility of miniaturizing devices to the millimeter scale. Here, the authors report wireless rectification at the GHz range in a microscale device built on single chiral tellurium with extremely low input powers. By studying the crystal symmetry and the temperature dependence of the rectification, the authors demonstrate that its origin is the intrinsic nonlinear conductivity of the material. Additionally, the unprecedented ability to modulate the rectification output by an electrostatic gate is shown. These results open the path to developing tuneable microscale wireless rectifiers with a single material.

2.
Nano Lett ; 24(15): 4471-4477, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587318

RESUMO

van der Waals magnets are emerging as a promising material platform for electric field control of magnetism, offering a pathway toward the elimination of external magnetic fields from spintronic devices. A further step is the integration of such magnets with electrical gating components that would enable nonvolatile control of magnetic states. However, this approach remains unexplored for antiferromagnets, despite their growing significance in spintronics. Here, we demonstrate nonvolatile electric field control of magnetoelectric characteristics in van der Waals antiferromagnet CrSBr. We integrate a CrSBr channel in a flash-memory architecture featuring charge trapping graphene multilayers. The electrical gate operation triggers a nonvolatile 200% change in the antiferromagnetic state of CrSBr resistance by manipulating electron accumulation/depletion. Moreover, the nonvolatile gate modulates the metamagnetic transition field of CrSBr and the magnitude of magnetoresistance. Our findings highlight the potential of manipulating magnetic properties of antiferromagnetic semiconductors in a nonvolatile way.

3.
Nat Commun ; 15(1): 1902, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429273

RESUMO

As CMOS technologies face challenges in dimensional and voltage scaling, the demand for novel logic devices has never been greater, with spin-based devices offering scaling potential, at the cost of significantly high switching energies. Alternatively, magnetoelectric materials are predicted to enable low-power magnetization control, a solution with limited device-level results. Here, we demonstrate voltage-based magnetization switching and reading in nanodevices at room temperature, enabled by exchange coupling between multiferroic BiFeO3 and ferromagnetic CoFe, for writing, and spin-to-charge current conversion between CoFe and Pt, for reading. We show that, upon the electrical switching of the BiFeO3, the magnetization of the CoFe can be reversed, giving rise to different voltage outputs. Through additional microscopy techniques, magnetization reversal is linked with the polarization state and antiferromagnetic cycloid propagation direction in the BiFeO3. This study constitutes the building block for magnetoelectric spin-orbit logic, opening a new avenue for low-power beyond-CMOS technologies.

4.
Phys Rev Lett ; 132(4): 046303, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335368

RESUMO

Electrical transport in noncentrosymmetric materials departs from the well-established phenomenological Ohm's law. Instead of a linear relation between current and electric field, a nonlinear conductivity emerges along specific crystallographic directions. This nonlinear transport is fundamentally related to the lack of spatial inversion symmetry. However, the experimental implications of an inversion symmetry operation on the nonlinear conductivity remain to be explored. Here, we report on a large, nonlinear conductivity in chiral tellurium. By measuring samples with opposite handedness, we demonstrate that the nonlinear transport is odd under spatial inversion. Furthermore, by applying an electrostatic gate, we modulate the nonlinear output by a factor of 300, reaching the highest reported value excluding engineered heterostructures. Our results establish chiral tellurium as an ideal compound not just to study the fundamental interplay between crystal structure, symmetry operations and nonlinear transport; but also to develop wireless rectifiers and energy-harvesting chiral devices.

5.
Adv Mater ; 36(18): e2310768, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38237911

RESUMO

A charge density wave (CDW) represents an exotic state in which electrons are arranged in a long-range ordered pattern in low-dimensional materials. Although the understanding of the fundamental character of CDW is enriched after extensive studies, its practical application remains limited. Here, an unprecedented demonstration of a tunable charge-spin interconversion (CSI) in graphene/1T-TaS2 van der Waals heterostructures is shown by manipulating the distinct CDW phases in 1T-TaS2. Whereas CSI from spins polarized in all three directions is observed in the heterostructure when the CDW phase does not show commensurability, the output of one of the components disappears, and the other two are enhanced when the CDW phase becomes commensurate. The experimental observation is supported by first-principles calculations, which evidence that chiral CDW multidomains in the heterostructure are at the origin of the switching of CSI. The results uncover a new approach for on-demand CSI in low-dimensional systems, paving the way for advanced spin-orbitronic devices.

6.
Nat Commun ; 14(1): 7253, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945570

RESUMO

Two-dimensional magnets and superconductors are emerging as tunable building-blocks for quantum computing and superconducting spintronic devices, and have been used to fabricate all two-dimensional versions of traditional devices, such as Josephson junctions. However, novel devices enabled by unique features of two-dimensional materials have not yet been demonstrated. Here, we present NbSe2/CrSBr van der Waals superconducting spin valves that exhibit infinite magnetoresistance and nonreciprocal charge transport. These responses arise from a unique metamagnetic transition in CrSBr, which controls the presence of localized stray fields suitably oriented to suppress the NbSe2 superconductivity in nanoscale regions and to break time reversal symmetry. Moreover, by integrating different CrSBr crystals in a lateral heterostructure, we demonstrate a superconductive spin valve characterized by multiple stable resistance states. Our results show how the unique physical properties of layered materials enable the realization of high-performance quantum devices based on novel working principles.

7.
ACS Appl Mater Interfaces ; 15(42): 49538-49544, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37846079

RESUMO

The emergence of symmetry-breaking orders such as ferromagnetism and the weak interlayer bonding in van der Waals materials offers a unique platform to engineer novel heterostructures and tune transport properties like thermal conductivity. Here, we report the experimental and theoretical study of the cross-plane thermal conductivity, κ⊥, of the van der Waals two-dimensional (2D) ferromagnet Fe3GeTe2. We observe an increase in κ⊥ with thickness, indicating a diffusive transport regime with ballistic contributions. These results are supported by the theoretical analyses of the accumulated thermal conductivity, which show an important contribution of phonons with mean free paths between 10 and 200 nm. Moreover, our experiments show a reduction of κ⊥ in the low-temperature ferromagnetic phase occurring at the magnetic transition. The calculations show that this reduction in κ⊥ is associated with a decrease in the group velocities of the acoustic phonons and an increase in the phonon-phonon scattering of the Raman modes that couple to the magnetic phase. These results demonstrate the potential of van der Waals ferromagnets for thermal transport engineering.

8.
Adv Mater ; 35(44): e2302045, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37441751

RESUMO

Polaritons in layered materials (LMs) are a promising platform to manipulate and control light at the nanometer scale. Thus, the observation of polaritons in wafer-scale LMs is critically important for the development of industrially relevant nanophotonics and optoelectronics applications. In this work, phonon polaritons (PhPs) in wafer-scale multilayer hexagonal boron nitride (hBN) grown by chemical vapor deposition are reported. By infrared nanoimaging, the PhPs are visualized, and PhP lifetimes of ≈0.6 ps are measured, comparable to that of micromechanically exfoliated multilayer hBN. Further, PhP nanoresonators are demonstrated. Their quality factors of ≈50 are about 0.7 times that of state-of-the-art devices based on exfoliated hBN. These results can enable PhP-based surface-enhanced infrared spectroscopy (e.g., for gas sensing) and infrared photodetector applications.

9.
Nano Lett ; 23(10): 4406-4414, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37140909

RESUMO

Graphene is a light material for long-distance spin transport due to its low spin-orbit coupling, which at the same time is the main drawback for exhibiting a sizable spin Hall effect. Decoration by light atoms has been predicted to enhance the spin Hall angle in graphene while retaining a long spin diffusion length. Here, we combine a light metal oxide (oxidized Cu) with graphene to induce the spin Hall effect. Its efficiency, given by the product of the spin Hall angle and the spin diffusion length, can be tuned with the Fermi level position, exhibiting a maximum (1.8 ± 0.6 nm at 100 K) around the charge neutrality point. This all-light-element heterostructure shows a larger efficiency than conventional spin Hall materials. The gate-tunable spin Hall effect is observed up to room temperature. Our experimental demonstration provides an efficient spin-to-charge conversion system free from heavy metals and compatible with large-scale fabrication.

10.
Nano Lett ; 23(9): 3985-3993, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37116103

RESUMO

Strong coupling (SC) between light and matter excitations bears intriguing potential for manipulating material properties. Typically, SC has been achieved between mid-infrared (mid-IR) light and molecular vibrations or between visible light and excitons. However, simultaneously achieving SC in both frequency bands remains unexplored. Here, we introduce polaritonic nanoresonators (formed by h-BN layers on Al ribbons) hosting surface plasmon polaritons (SPPs) at visible frequencies and phonon polaritons (PhPs) at mid-IR frequencies, which simultaneously couple to excitons and molecular vibrations in an adjacent layer of CoPc molecules, respectively. Employing near-field optical nanoscopy, we demonstrate the colocalization of near fields at both visible and mid-IR frequencies. Far-field transmission spectroscopy of the nanoresonator structure covered with a layer of CoPc molecules shows clear mode splittings in both frequency ranges, revealing simultaneous SPP-exciton and PhP-vibron coupling. Dual-band SC may offer potential for manipulating coupling between exciton and molecular vibration in future optoelectronics, nanophotonics, and quantum information applications.

11.
Nat Commun ; 13(1): 6850, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369225

RESUMO

Phonon polariton (PhP) nanoresonators can dramatically enhance the coupling of molecular vibrations and infrared light, enabling ultrasensitive spectroscopies and strong coupling with minute amounts of matter. So far, this coupling and the resulting localized hybrid polariton modes have been studied only by far-field spectroscopy, preventing access to modal near-field patterns and dark modes, which could further our fundamental understanding of nanoscale vibrational strong coupling (VSC). Here we use infrared near-field spectroscopy to study the coupling between the localized modes of PhP nanoresonators made of h-BN and molecular vibrations. For a most direct probing of the resonator-molecule coupling, we avoid the direct near-field interaction between tip and molecules by probing the molecule-free part of partially molecule-covered nanoresonators, which we refer to as remote near-field probing. We obtain spatially and spectrally resolved maps of the hybrid polariton modes, as well as the corresponding coupling strengths, demonstrating VSC on a single PhP nanoresonator level. Our work paves the way for near-field spectroscopy of VSC phenomena not accessible by conventional techniques.

12.
Nano Lett ; 22(19): 7992-7999, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162104

RESUMO

One of the major obstacles to realizing spintronic devices such as MESO logic devices is the small signal magnitude used for magnetization readout, making it important to find materials with high spin-to-charge conversion efficiency. Although intermixing at the junction of two materials is a widely occurring phenomenon, its influence on material characterization and the estimation of spin-to-charge conversion efficiencies are easily neglected or underestimated. Here, we demonstrate all-electrical spin-to-charge conversion in BixSe1-x nanodevices and show how the conversion efficiency can be overestimated by tens of times depending on the adjacent metal used as a contact. We attribute this to the intermixing-induced compositional change and the properties of a polycrystal that lead to drastic changes in resistivity and spin Hall angle. Strategies to improve the spin-to-charge conversion signal in similar structures for functional devices are discussed.

13.
Nano Lett ; 22(16): 6509-6515, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960261

RESUMO

Strain engineering can be used to control the physical properties of two-dimensional van der Waals (2D-vdW) crystals. Coherent phonons, which carry dynamical strain, could push strain engineering to control classical and quantum phenomena in the unexplored picosecond temporal and nanometer spatial regimes. This intriguing approach requires the use of coherent GHz and sub-THz 2D phonons. Here, we report on nanostructures that combine nanometer thick vdW layers and nanogratings. Using an ultrafast pump-probe technique, we generate and detect in-plane coherent phonons with frequency up to 40 GHz and hybrid flexural phonons with frequency up to 10 GHz. The latter arises from the periodic modulation of the elastic coupling of the vdW layer at the grooves and ridges of the nanograting. This creates a new type of a tailorable 2D periodic phononic nanoobject, a flexural phononic crystal, offering exciting prospects for the ultrafast manipulation of states in 2D materials in emerging quantum technologies.

14.
Nano Lett ; 22(10): 4153-4160, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35435688

RESUMO

Strain is an effective strategy to modulate the optoelectronic properties of 2D materials, but it has been almost unexplored in layered hybrid organic-inorganic metal halide perovskites (HOIPs) due to their complex band structure and mechanical properties. Here, we investigate the temperature-dependent microphotoluminescence (PL) of 2D (C6H5CH2CH2NH3)2Cs3Pb4Br13 HOIP subject to biaxial strain induced by a SiO2 ring platform on which flakes are placed by viscoelastic stamping. At 80 K, we found that a strain of <1% can change the PL emission from a single peak (unstrained) to three well-resolved peaks. Supported by micro-Raman spectroscopy, we show that the thermomechanically generated strain modulates the bandgap due to changes in the octahedral tilting and lattice expansion. Mechanical simulations demonstrate the coexistence of tensile and compressive strain along the flake. The observed PL peaks add an interesting feature to the rich phenomenology of photoluminescence in 2D HOIPs, which can be exploited in tailored sensing and optoelectronic devices.

15.
Adv Mater ; 34(21): e2200474, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35334502

RESUMO

The exfoliation of layered magnetic materials generates atomically thin flakes characterized by an ultrahigh surface sensitivity, which makes their magnetic properties tunable via external stimuli, such as electrostatic gating and proximity effects. Another powerful approach to engineer magnetic materials is molecular functionalization, generating hybrid interfaces with tailored magnetic interactions, called spinterfaces. However, spinterface effects have not yet been explored on layered magnetic materials. Here, the emergence of spinterface effects is demonstrated at the interface between flakes of the prototypical layered magnetic metal Fe3 GeTe2 and thin films of Co-phthalocyanine. Magnetotransport measurements show that the molecular layer induces a magnetic exchange bias in Fe3 GeTe2 , indicating that the unpaired spins in Co-phthalocyanine develop antiferromagnetic ordering and pin the magnetization reversal of Fe3 GeTe2 via magnetic proximity. The effect is strongest for a Fe3 GeTe2 thickness of 20 nm, for which the exchange bias field reaches -840 Oe at 10 K and is measurable up to ≈110 K. This value compares very favorably with previous exchange bias fields reported for Fe3 GeTe2 in all-inorganic van der Waals heterostructures, demonstrating the potential of molecular functionalization to tailor the magnetism of van der Waals layered materials.

16.
Nat Mater ; 21(5): 526-532, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35256792

RESUMO

Chiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear. Here, we demonstrate the all-electrical generation, manipulation and detection of spin polarization in chiral single-crystalline tellurium nanowires. By recording a large (up to 7%) and chirality-dependent unidirectional magnetoresistance, we show that the orientation of the electrically generated spin polarization is determined by the nanowire handedness and uniquely follows the current direction, while its magnitude can be manipulated by an electrostatic gate. Our results pave the way for the development of magnet-free chirality-based spintronic devices.


Assuntos
Nanofios , Eletricidade , Eletricidade Estática , Estereoisomerismo , Telúrio
17.
ACS Appl Mater Interfaces ; 14(6): 8598-8604, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35119253

RESUMO

The spin Hall magnetoresistance (SMR) emerged as a reference tool to investigate the magnetic properties of materials with an all-electrical setup. Its sensitivity to the magnetization of thin films and surfaces may turn it into a valuable technique to characterize van der Waals magnetic materials, which support long-range magnetic order in atomically thin layers. However, realistic surfaces can be affected by defects and disorder, which may result in unexpected artifacts in the SMR, rather than the sole appearance of electrical noise. Here, we study the SMR response of heterostructures combining a platinum (Pt) thin film with the van der Waals antiferromagnet MnPSe3 and observe a robust SMR-like signal, which turns out to originate from the presence of strong interfacial disorder in the system. We use transmission electron microscopy (TEM) to characterize the interface between MnPSe3 and Pt, revealing the formation of a few nanometer-thick platinum-chalcogen amorphous layer. The analysis of the transport and TEM measurements suggests that the signal arises from a disordered magnetic system formed at the Pt/MnPSe3 interface, washing out the interaction between the spins of the Pt electrons and the MnPSe3 magnetic lattice. Our results show that the damaged interfaces can yield an important contribution to SMR, questioning a widespread assumption on the role of disorder in such measurements.

18.
Nanoscale ; 14(4): 1165-1173, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35018950

RESUMO

Atomically thin van der Waals magnetic crystals are characterized by tunable magnetic properties related to their low dimensionality. While electrostatic gating has been used to tailor their magnetic response, chemical approaches like intercalation remain largely unexplored. Here, we demonstrate the manipulation of the magnetism in the van der Waals antiferromagnet NiPS3 through the intercalation of different organic cations, inserted using an engineered two-step process. First, the electrochemical intercalation of tetrabutylammonium cations (TBA+) results in a ferrimagnetic hybrid compound displaying a transition temperature of 78 K, and characterized by a hysteretic behavior with finite remanence and coercivity. Then, TBA+ cations are replaced by cobaltocenium via an ion-exchange process, yielding a ferrimagnetic phase with higher transition temperature (98 K) and higher remanent magnetization. Importantly, we demonstrate that the intercalation and cation exchange processes can be carried out in bulk crystals and few-layer flakes, opening the way to the integration of intercalated magnetic materials in devices.

19.
Chem Rev ; 122(1): 50-131, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34816723

RESUMO

Two-dimensional materials (2DMs) have attracted tremendous research interest over the last two decades. Their unique optical, electronic, thermal, and mechanical properties make 2DMs key building blocks for the fabrication of novel complementary metal-oxide-semiconductor (CMOS) and beyond-CMOS devices. Major advances in device functionality and performance have been made by the covalent or noncovalent functionalization of 2DMs with molecules: while the molecular coating of metal electrodes and dielectrics allows for more efficient charge injection and transport through the 2DMs, the combination of dynamic molecular systems, capable to respond to external stimuli, with 2DMs makes it possible to generate hybrid systems possessing new properties by realizing stimuli-responsive functional devices and thereby enabling functional diversification in More-than-Moore technologies. In this review, we first introduce emerging 2DMs, various classes of (macro)molecules, and molecular switches and discuss their relevant properties. We then turn to 2DM/molecule hybrid systems and the various physical and chemical strategies used to synthesize them. Next, we discuss the use of molecules and assemblies thereof to boost the performance of 2D transistors for CMOS applications and to impart diverse functionalities in beyond-CMOS devices. Finally, we present the challenges, opportunities, and long-term perspectives in this technologically promising field.


Assuntos
Óxidos , Semicondutores , Eletrodos , Eletrônica , Metais/química , Óxidos/química
20.
Nat Commun ; 12(1): 6206, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707119

RESUMO

Strong coupling between molecular vibrations and microcavity modes has been demonstrated to modify physical and chemical properties of the molecular material. Here, we study the less explored coupling between lattice vibrations (phonons) and microcavity modes. Embedding thin layers of hexagonal boron nitride (hBN) into classical microcavities, we demonstrate the evolution from weak to ultrastrong phonon-photon coupling when the hBN thickness is increased from a few nanometers to a fully filled cavity. Remarkably, strong coupling is achieved for hBN layers as thin as 10 nm. Further, the ultrastrong coupling in fully filled cavities yields a polariton dispersion matching that of phonon polaritons in bulk hBN, highlighting that the maximum light-matter coupling in microcavities is limited to the coupling strength between photons and the bulk material. Tunable cavity phonon polaritons could become a versatile platform for studying how the coupling strength between photons and phonons may modify the properties of polar crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...